This interdisciplinary thesis involves the design and analysis of coordination algorithms on networks, identification of dynamic networks and estimation on networks with random geometries with implications for networks that support the operation of dynamic systems, e.g., formations of robotic vehicles, distributed estimation via sensor networks. The results have ramifications for fault detection and isolation of large-scale networked systems and optimization models and algorithms for next generation aircraft power systems. The author finds novel applications of the methodology in energy systems, such as residential and industrial smart energy management systems.