Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Es wird demonstriert, wie man die Algorithmen des maschinellen Lernens verwendet und der Hintergrund geliefert, um zu verstehen, wie und warum diese Algorithmen funktionieren. - Ebenfalls enthalten ist ein kompakter Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens. - Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. - Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. - Es werden verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens besprochen, u.a. Random Forest, DBSCAN und Q-Learning. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis.